Cuprins Limbajul C

Gandirea algoritmica
Structura unui program si a unei functii in C
Constructiile de bază ale limbajului C – Notiuni generale
Constructiile de baza ale limbajului C – Tipuri de date
Constructiile de baza ale limbajului C – Operatori
Structuri de date – Lista liniara simplu inlantuita
Structuri de date – Stiva (LIFO – Last In First Out)
Structuri de date – Coada (FIFO – First In First Out)
Instructiuni ale limbajului C
Pointeri – Operatori specifici, tablouri, functii
Pointeri – Tipuri structurate de date
Functii de biblioteca
Operatii cu fisiere
Calcul Matriceal – Produsul a doua matrici
Calcul Matriceal – Inversarea unei matrici
Calcul Matricial – Metoda lui Gauss
Metode de sortare – sortare ordinara
Metode de sortare – prin selectie (Selection sort)
Metode de sortare – insertie directa (Direct Insertion Sort)
Metode de sortare – insertie binara (Binary Insertion Sort)
Metode de sortare – insertie directa folosind o santinela
Metode de sortare – metoda bulelor (Bubble Sort)
Metode de sortare – sortare rapida (Quick Sort)
Metode de sortare – prin interclasare (Merge Sort)
Recursivitate (numar factorial, algoritmul lui Euclid recursiv, sirul lui Fibonacci)
Backtracking – permutarile
Backtracking – aranjamente
Backtracking – combinari
Backtracking – problema reginelor
Backtracking – problema labirintului
Backtracking – problema calului
Backtracking – problema mingii
Metoda Divide et Impera – Suma elementelor unui sir
Metoda Divide et Impera – Problema Turnurilor din Hanoi
Metoda Divide et Impera – Elementul maxim intr-un sir
Metoda Divide et Impera – Problema cautarii binare
Grafuri neorientate – parcurgerea in latime
Grafuri neorientate – parcurgerea in adancime
Grafuri neorientate – Drumuri intr-un graf
Grafuri neorientate – ponderate
Grafuri neorientate – hamiltonian
Grafuri neorientate – euleriene
Grafuri neorientate – implementarea unui graf utilizand matricea de adiacenta
Grafuri neorientate – implementarea unui graf utilizand pointeri
Grafuri neorientate – drumul optim intr-un graf

Metoda Divide et Impera – Suma elementelor unui sir

Prezentare generala:
Divide et Impera se bazează pe principiul descompunerii problemei în două sau mai multe subprobleme (mai ușoare), care se rezolvă, iar soluția pentru problema inițială se obține combinând soluțiile subproblemelor. De multe ori, subproblemele sunt de același tip și pentru fiecare din ele se poate aplica aceeași tactică a descompunerii în (alte) subprobleme, până când (în urma descompunerilor repetate) se ajunge la probleme care admit rezolvare imediată.

Nu toate problemele pot fi rezolvate prin utilizarea acestei tehnici. Se poate afirma că numărul celor rezolvabile prin “divide et impera” este relativ mic, tocmai datorită cerinței ca problema să admită o descompunere repetată.

Divide et impera este o tehnică ce admite o implementare recursivă. Principiul general prin care se elaborează algoritmi recursivi este: “ce se întâmplă la un nivel, se întâmplă la orice nivel” (având grijă să asigurăm condițiile de terminare). Așadar, un algoritm prin divide et impera se elaborează astfel: la un anumit nivel avem două posibilități:

1. s-a ajuns la o problemă care admite o rezolvare imediată (condiția de terminare), caz în care se rezolvă și se revine din apel;
2. nu s-a ajuns în situația de la punctul 1, caz în care problema curentă este descompusă în (două sau mai multe) subprobleme, pentru fiecare din ele urmează un apel recursiv al funcției, după care combinarea rezultatelor are loc fie pentru fiecare subproblemă, fie la final, înaintea revenirii din apel.


#include "stdio.h"
#incude "conio.h"
int a[20];
int divide(int ls, int ld)
{
  int mijloc,d1,d2;
  if(ls != ld)
  {
    mijloc=(ls+ld)/2;
    d1=divide(ls, mijloc);
    d2=divide(mijloc+1,ld);
    return(d1+d2);
  }
  else
    return(a[ls]);
}
Continue reading